METHOD OF STATEMENT FOR WAVE PROPAGATION PILE TESTING

According to the American Standards

ASTM D4945-08, ADTM D5882-07 and ASTM D6760-08
Introduction

Types of Wave Propagation Pile Testing

Scope of Work

1. High Strain Dynamic Test
 i. General
 ii. Frequency
 iii. Prerequisite
 iv. Method

2. Low Strain Integrity Test
 i. General
 ii. Frequency
 iii. Prerequisite
 iv. Method

3. Cross Hole Sonic Test
 i. General
 ii. Frequency
 iii. Prerequisite
 iv. Method

TESTING APPARATUS

SOFTWARE ANALYSIS
 i. CAPWAP
 ii. Pit-W
 iii. CHA-W

RESULTS OF TEST

ACCEPTANCE CRITERIA
Introduction

In the 1950’s, E.A. Smith of the Raymond Pile Driving Company studied wave propagation on slender rods, and developed a numerical analysis method to predict the capacity versus blow count relationship and investigate pile driving stresses. The model mathematically represents the hammer and all its accessories (ram, cap, cap block), as well as the pile, as a series of lumped masses and springs in a one-dimensional analysis. The soil response for each pile segment is modeled as viscoelastic-plastic. All components of the system are realistically modeled. The analysis begins with the hammer ram falling and attaining an initial velocity at impact. This method is the best technique for predicting the relationship of pile capacity and blow counts (or set per blow), and the only method available to predict driving stresses. Improvements to Smith’s method to incorporate a thermodynamic diesel hammer model and residual stresses. The wave equation approach is an excellent predictive tool for analysis of impact pile driving, but it has some limitations. These are mainly due to uncertainties in quantifying some of the required inputs, such as actual hammer performance and soil parameters.

Types Wave Propagation Pile Testing

There are different types of Wave Propagation pile testing; three of these tests are covered in this method of statement:

2. Low Strain Pile Integrity Testing.
3. Cross Hole Sonic Test.
1. High Strain Dynamic Test

i. General

High Strain Dynamic Load Testing (HSDLT) of piles is a fast and effective method of assessing foundation bearing capacity that requires instrumenting a deep foundation with accelerometers and strain transducers and analyzing data collected by these sensors. The procedure is based on the case method of pile testing and is standardized by ASTM D4945-08 Standard Test Method for High Strain Dynamic Testing of Piles. It may be performed on driven piles, drilled piles and other cast in place foundations. In addition to bearing capacity, Dynamic Load Testing gives information on resistance distribution (pile resistance and end bearing) and evaluates the shape and integrity of the foundation element. The foundation bearing capacity results obtained with dynamic load tests correlate well with the results of static load tests performed on the same foundation element.

ii. Frequency

The frequency of this test is one pile to represent the entire site including current and future pile installation. Engineer may increase no. of piles (Tests) as required. Typically testing includes 5% to 15% of the total no. of the working piles.

iii. Prerequisite

The static axial capacity of piles typically changes as time elapses after pile installation, possibly increasing (setup) or decreasing (relaxation), depending on the soil or rock properties and the pore water pressure and soil structure disturbance induced by installation. This behavior may affect both driven piles and cast-in-place piles. The Engineer may specify a waiting period between pile installation and High Strain Dynamic Load testing to investigate time effects. The waiting period may range from 3 to 30 days, or longer, based on testing (for example re-driving piles) or prior experience. Also the concrete to be sufficiently hardened. This can be confirmed by the concrete test cube reports.
iv. **Method**

High-strain dynamic testing is performed by obtaining and analyzing records of pile force and velocity under drop weight or Hammer impacts for evaluations of pile load carrying capacity, structural integrity, and load-movement and pile-soil load transfer relationships. Allow sufficient time for driven and cast-in place deep foundations constructed of concrete to gain adequate structural strength prior to testing.

1. If a permanent casing is not used as a feature to construct the test pile, then a pile top extension, consisting of a thin walled casing or equivalent, shall be used to extend the test pile. Means to insure flat, level, (axial to test pile) and solid concrete pile top. Concrete should be level with, and slightly above the casing. If the top of the test pile is below grade, then remove surrounding soil so as to completely expose a test area as described above. Windows on at least two opposite sides of the test pile may have to be cut off in the steel casing to reach the concrete. (Not Applicable for a pre-cast pile or steel Pipe Pile).

2. In cases where casing is not present, smooth (by grinding) areas around the pile circumference such that proper sensor attachment can be accomplished.

3. Sensors (at least 2 nos.) shall be attached to the exposed concrete or steel casing in a secure manner as to prevent slippage under impact.

4. For concrete piles or concrete filled pipe piles, place a pile cushion made of plywood or other material with similar stiffness on top of the pile. For concrete filled pipe piles, the concrete must completely fill the pile top so that the impact is transferred through the pile cushion to the concrete.

5. Dynamic tests performed during the initial installation of a driven pile typically monitor the performance of the impact device, the driving stresses in the pile, the pile integrity, and relative changes in capacity. If the test results are used for static capacity computations, then dynamic measurements should (also) be performed during restrikes of the deep foundation, after waiting a period of time following the initial installation sufficient to allow pore water pressure and soil strength changes to occur.

6. A drop weight of approximately two percent (2%) of the anticipated test pile capacity, (one percent may be sufficient for piles with rock sockets); higher percentages are helpful when practical and when available or specialized Diesel/Hydraulic Hammer can be used for pre-cast piles. The impacting surface of the drop weight should have an area between 70 and 130% of the test pile top area. The shape of the ram weight should be as regular as possible (square, round, hexagonal, etc.). A top cushion consisting of new sheets of plywood with total thickness between (50 to 150 mm.) shall be used to absorb the hammer impact.

7. At least two (2) hammer impacts should be applied to the top of the pile. First drop height should be minimal to allow the Testing Engineer to assess the testing equipment, the impact system and the stresses on the foundation. Subsequent impacts can then be applied by utilizing sequentially higher drop heights until either stresses in the foundation are excessive or the pile permanent set for the applied impact exceeds 2.5 mm.

8. Based on the measurements from strain or force, and acceleration, velocity, or displacement transducers, this test method obtains the force and velocity induced in a pile during an axial impact. The Engineer may analyze the acquired data using engineering principles, CAPWAP and judgment to evaluate the integrity of the pile, the performance of the impact system, and the maximum compressive and tensile stresses occurring in the pile and after assessing the resulting dynamic soil response along the side and bottom of the pile, the Engineer may analyze the results of a high-strain dynamic test to estimate the ultimate axial static compression capacity.
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

Typical Force and Velocity Traces Generated by the Apparatus for Obtaining Dynamic Measurements

Typical Arrangement for High-Strain Dynamic Testing of a Deep Foundation

Schematic Diagram of Apparatus for Dynamic Monitoring of Deep Foundations

Typical Arrangement for Attaching Transducers to Concrete Piles

Typical Arrangement for Attaching Transducers to Pipe Piles

Typical Arrangement for Attaching Transducers to H-Piles

AL-LIQA’A BUREAU FOR PILING TEST | Street 18, Al-Rashan Building, Karadah Kharij
Phone: +964 (0) 7902 377 309
www.lptconsultant.com
Email: info@lptconsultant.com
2. Low Stain Integrity Test

i. **General**

Low Strain Pile Integrity Test (LSPIT) is echo or seismic method of assessing the integrity of piles has been used since the 1970's to check the integrity of piled foundations and is standardized by ASTM D5882-07 Standard Test Method for Low Strain Integrity Testing of Piles. The system measures the velocity response of a pile to a force input generated by a small hammer. The system is rapid in operation and can be used to check the depth of both pre-cast and cast-in-situ piles. The possible causes of intermediate responses can also be assessed.

ii. **Frequency**

The frequency of this test is one pile to represent the entire site including current and future pile installation. Engineer may increase no. of piles (Tests) as required. Typically testing includes 100% of the total no. of the working piles.

iii. **Prerequisite**

For cast-in-place concrete piles or concrete filled pipe piles, perform the integrity testing no sooner than 7 days after casting or after concrete strength achieves at least 75 % of its design strength, whichever occurs earlier. Ensure that the pile head surface is accessible, above water, and clean of loose concrete, soil or other foreign materials resulting from construction. If the pile head is contaminated, remove a sufficient pile section to reach sound concrete. Because proper pile top preparation is critical to the successful application of this method, if necessary, prepare small areas by a hand grinder to provide a smooth surface for motion sensor attachment and impact.
iv. **Method**

The accelerometer must be firmly affixed to the pile top in order to measure the high-frequency motion of that surface during impact and reflection. For best results, the accelerometer should be bonded to the pile top. Petroleum jelly works nicely in cold weather. Other adhesive materials such as plastic clay or bowl sealer wax can also be used.

1. The motion sensor should be placed at or near the pile head using a suitable, or temporary, thin layer of bonding material (that is, wax, Vaseline, putty etc.) so that it is assured that it correctly measures the axial pile motion (transducer axis of sensitivity aligned with the pile axis).

2. The motion sensor is placed generally near the center of the pile. Additional locations should be considered for piles with diameters greater than 500 mm.

3. The low strain impact should be applied to the pile head within a distance of 300 mm from the motion sensor. If the pile head is not accessible, as when already integral with the structure, the sensor(s) may be attached to the side of the pile.

4. The signals from the motion sensors shall be conveyed to the Pile Integrity Tester (PIT) for recording, reducing, and displaying data as a function of time. The PIT includes a graphic display of velocity, and a data storage capability for retrieving records for further analysis.

5. Record the measurements from several impacts. Average the suitable records of at least three impacts and apply necessary amplification to the averaged record. The records from the individual impacts or the averaged record, or both, should then be. The averaged, amplified record then can be evaluated for integrity.
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

Schematic Diagram of Apparatus for Pile Integrity Tester (PIT)

Typical Velocity Traces for the Pulse Echo Method Generated by the PIT for Obtaining Dynamic Measurements (note the orientation of the input pulse is shown as positive in this standard; orientation could also be shown negative)

Typical Velocity Record Indicating Pile of Generally Uniform Nature (Gradual Impedance Changes or Soil Friction) (note the orientation of the input pulse is shown as positive in this standard; orientation could also be shown negative)

Typical Velocity Record Indicating Major Changes in Impedance (Severe Damage or a Cracked Pile (note the orientation of the input pulse is shown as positive in this standard; orientation could also be shown negative))
3. Cross Hole Sonic Test

i. General

Cross-hole Sonic Logging (CSL) is a NDT method which involves ultrasonic signal transmission through the pile between two parallel water filled access tubes. The access tubes are often tied to the steel cage and cast permanently into the pile. The total number of access tubes typically depends on the diameter of the pile. A transmitter probe and a receiver probe are lowered to the bottom of the pile in separate access tubes. Measurements of the signal transmission are collected approximately every 5 cm as the probes are raised to the top of the pile. The cables attached to the probes are pulled through calibrated encoder wheels which can accurately determine the depth of the probe during testing. A collection of measurements from one access tube to another are called a profile. Profiles are collected from all combinations of access tubes. The test method is described in ASTM D6760-08.

ii. Frequency

The frequency of this test is one pile to represent the entire site including current and future pile installation. Engineer may increase no. of piles (Tests) as required. Typically testing includes 50% - 100% of the total no. of the working piles.

iii. Prerequisite

The access ducts shall be supplied and installed during construction by or in cooperation with the contractor of the deep foundation element to be tested. The total number of installed access ducts in the deep foundation element should be chosen consistent with good coverage of the cross section. As a guide, the number of access ducts is often selected as one duct for every 0.25 to 0.30 m of deep foundation element diameter, spaced equally around the circumference. A minimum of three access ducts is preferred for cross-hole testing. Single access tubes of PVC or equivalent other material with low wave speed is acceptable for single hole testing of small diameter deep foundation elements.
iv. **Method**

The actual speed of sound wave propagation in concrete is dependent on the concrete material properties, geometry of the element and wavelength of the sound waves. When ultrasonic frequencies (for example, >20 000 Hz) are generated, Pressure (P) waves and Shear (S) waves travel though the concrete. Because S waves are relatively slow, they are of no further interest in this method. In good quality concrete the P-wave speed would typically range between 3600 to 4400 m/s. Poor quality concrete containing defects (for example, soil inclusion, gravel, water, drilling mud, bentonite, voids, contaminated concrete, or excessive segregation of the constituent particles) has a comparatively lower P-wave speed. By measuring the transit time of an ultrasonic P-wave signal between an ultrasonic transmitter and receiver in two parallel water filled access ducts cast into the concrete during construction and spaced at a known distance apart, such anomalies may be detected.

1. The access tubes shall be filled with water and straight and free from internal obstructions. The exterior tube surface shall be free from contamination (for example, oil, dirt, loose rust, mill scale, etc.), and for plastic tubes the surface shall be fully roughened by abrasion prior to installation, to ensure a good bond between the tube surface and the surrounding concrete. The ends of the tubes shall be undamaged and suitably prepared for the end caps and coupling system adopted. The access tubes shall be close-ended at the bottom and fitted with removable end caps at the top to prevent entry of concrete or foreign objects, which could block the tubes prior to testing operations. If extension of the access tubes is necessary due to long tube lengths, access tube couplings shall be used which prevent slurry or grout ingress during construction. Butt welding for steel tube couplings shall not be permitted. For coupling plastic tubes, threaded or glued plastic couplings shall be used. Wrapping the joints with tape or other compounds is strictly forbidden.

2. The tests shall be performed no sooner than 3 to 7 days after casting depending on concrete strength and shaft diameter (larger diameter shafts may take closer to 7 days). In the case of plastic access tubes, testing should be completed as soon as practical to prevent loss of data caused by de-bonding of the concrete from the tube.

3. The access ducts shall be exposed and the protective top caps removed. Preferably, use a weighted measuring tape to measure and record the length of each access duct to the nearest 10 mm. If the access duct is blocked, record the depth of the blockage from the access duct top. The access ducts shall be filled to the top with clean water.
4. Assign a systematic reference label to each access duct and prepare a reference sketch of the access duct layout using the magnetic compass or a site plan diagram. The as-built details of the access duct layout shall be recorded including measuring the center-to-center separations of the exposed access ducts to the nearest 10 mm using a measuring tape and measuring the access duct length exposed above the concrete, if any, to the nearest 100 mm.

5. Carefully lower the probes down to the bottom of the access ducts, always keeping them at approximately the same level, until one probe reaches the bottom of the duct or encounters an obstruction (for example, because one access duct is shorter, bent or blocked). Set the depth location to the bottom of the tubes, if necessary. Raise the probes from the tube bottom to a portion of the deep foundation element with good quality concrete. If required by the test system manufacturer, to ensure that the distance between probes is minimized, the relative level of the probes should be adjusted until the time of first arrival of the signal is minimized. Temporarily secure the cables at that level with the cables remaining in equal tension.

6. For Single Hole Sonic Test, the transmitter and receiver probes shall be fixed to each other at a preset vertical separation (for example, typically 600 mm). The vertical separation may be increased to scan a larger radius around the access duct. This will, however, reduce the measured profile length and the detection resolution. Place the probe cable pulley guide into the single access duct (PVC or equivalent duct required). Insert the transmitter and receiver probes into this access duct ensuring that the cables are engaged over the cable pulley guide fixed at the access duct top.

7. Begin recording the ultrasonic pulses as the probes are raised. Lift both probes by steadily pulling the probe cables simultaneously at a speed of ascent slow enough to capture one ultrasonic pulse for each depth interval specified. If an ultrasonic pulse is not obtained for any depth interval, then the probes shall be lowered past that depth and the test repeated until all depth intervals have an associated ultrasonic pulse. Data collection in some systems may proceed from the top down, or during both downward and upward probe travel. In some cases it is advantageous to place the probes at different levels during pulling. The differences can be at either fixed or variable distances depending on the application.

8. The results of the analysis shall include the time of first arrival of the ultrasonic pulses (or calculated wave speed) and the relative energy or amplitude plotted relative to the deep foundation element depth to quantify the extent and location of any apparent anomaly. Energy or amplitude are presented on a log scale, and attenuation of the relative signal strength assessed from the log scale or presented in dB.
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

Typical Access Duct Configurations

Test Arrangement for Cross-hole Sonic Logging
CSL and Single-hole Sonic Logging SSL

Typical Ultrasonic Profile

Pile with Full Layer Defect
SOFTWARE ANALYSIS

I. CAPWAP

CAPWAP (Case Pile Wave Analysis Program) is a software program that estimates total bearing capacity of a pile or shaft, as well as resistance distribution along the shaft and at the toe. The program takes as input the force and velocity data obtained with a Pile Driving Analyzer® (PDA). It is essential to post process PDA data with CAPWAP for at least one foundation element per job. CAPWAP completes the Dynamic Load Testing procedure and simulates a Static Load Test. CAPWAP 2006 has improved features for the analysis of drilled shafts and auger cast-in-place (CFA) piles. The program includes a completely automated mode as well as adjustable parameters with which the user systematically improves the calculated results. CAPWAP works in English, Metric or SI units, and features a comprehensive help feature. The CAPWAP manual introduces the user to the wave equation theory and signal matching procedure on which the program is based.

CAPWAP calculates:

- Static shaft resistance, magnitude and distribution.
- Static end bearing.
- Stresses at any point along the shaft.
- Energy transferred from the ram to the foundation.

From force and velocity data measured by the Pile Driving Analyzer® PDA on a foundation impacted by a ram. Based on these results, CAPWAP simulates a static load test and predicts the instantaneous load settlement behavior of the tested foundation. CAPWAP 2006 has an improved mathematical model that enhances the analysis of drilled shafts and augered cast-in-place piles. Numerous automatic search and help functions make CAPWAP an efficient and reliable analysis tool.

TYPICAL CAPWAP ANALYSIS

Forces and velocities measured at the top of a foundation during ram impact are related (complementary) quantities; foundation characteristics and soil resistance parameters govern this relationship. The basic CAPWAP procedure uses this fact and consists of the following steps:

1. Retrieve force and velocity data from the Pile Driving Analyzer.
2. Setup pile model.
3. Assume soil resistance parameters.
4. Perform analysis using one of the measured quantities as an input and calculate the complementary quantity.
5. Compare measured with computed quantity.
6. If match is not satisfactory, adjust soil parameters such as resistance, quake and damping and go to step 4.
7. Output soil model, satisfactory match and simulated static test.
HELP FEATURES
CAPWAP guides the user to properly adjust the large number of variables that affect the signal matching process. Arriving at bearing capacity results is an efficient and rewarding process thanks to:

- Automated signal matching option (AC)
- Best match for individual or groups of variables (AQ)
- Automatic resistance distribution (AF)
- Automatic toe parameters check (AT)
- Static resistance – damping exchange (RD)
- Extensive expert help system
- Background manual

THE CAPWAP PILE AND SOIL MODEL
CAPWAP is a signal matching program with an extended, Smith-type soil and continuous pile model. CAPWAP calculations are based on one-dimensional wave propagation theory. Calculations can be performed in English, SI or Metric units. In its default mode, CAPWAP models the deep foundation as a series of 1 m long uniform sections with multiple elastic properties. Pile damping, splices, non-uniformities and multiple pile or shaft materials may also be modeled. The soil resistance is typically lumped into individual resistance forces at 2 m intervals with elasto-plastic static, linearly viscous and mass related dynamic properties. Radiation damping is represented by an additional mass and dashpot. The user has the option of using individual toe resistance parameters such as a plug mass, a resistance gap and a true Smith damping approach.

OUTPUT
- Simulated static test.
- Resistance distribution.
- Forces and stresses along the shaft.
- Shaft and toe damping and quake.
- Measured and computed forces and velocities.
- Maxima of displacement and velocity.
- Transferred energy.
- CASE Method results.

CORRELATIONS
Correlations between Load-Set Curves from static load test and from CAPWAP simulated tests on a variety of soils and types of foundations have been extensively proven.
II. Pit-W

Pit-W is software for In-Depth Analysis of Data Collected with the Pile Integrity Tester PIT-W Professional maximizes the information you can extract from data collected with the Pile Integrity Tester (PIT). PIT-W Pro is particularly useful for:

- Comparing records from several piles on the same site.
- Analyzing data from foundations of existing structures.
- Assessing unknown foundation length.
- Evaluating the severity and location of anomalies along the shaft.

PIT-W Advanced Features:

- Profile Analysis - generates pile impedance versus depth plot to help estimate the shape of the foundation
- β-Analysis - quantifies impedance changes to help assess the severity of defects
- Multiple Column Plot - generates user customized summary sheets for easy record comparison.
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

III. CHA-W

DATA PROCESSING SOFTWARE CHA-W Performs data quality checks. Provides powerful tools for data analysis:

- Edge Finder for First Arrival Time detection.
- Defect Analysis for easy defect identification.
- Two methods of signal strength evaluation (energy or amplitude).

Outputs user customized graphs and tables:

- Sonic Map - Signal strength versus time and depth in traditional waterfall diagram.
- First Arrival Time - Signal travel time from transmitter to receiver, versus depth.
- Wave-speed Plot - Wave-speed (an indicator of concrete strength) versus depth.
- Wave–speed Table - Wave-speeds, means and standard deviations.
- Energy or Amplitude Plot - Signal strength versus depth.
- Defect location graphically (horizontal red line) and in table format.

TOMOSONIC

Optical tomography software produces 2-D and 3-D color coded images that help visualize local defects. Views include horizontal and vertical slices and a three dimensional representation of the shaft.
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

TESTING APPARATUS

Pile Driving Analyzer® (PDA) Model PAX

For Dynamic Load Testing and Dynamic Pile Monitoring, The Pile Driving Analyzer (PDA) acquires data from accelerometers and strain transducers attached to a pile or shaft. The tests require the impact of a pile driving hammer or, if that is not available, of a suitable drop weight.

Dynamic Load Test

- Results: Bearing capacity, structural integrity assessment
- PDA data analyzed with the CAPWAP® software
- Excellent correlation with static load tests
- Performed on drilled Piles, continuous flight auger, cast-in-situ or driven piles on a restrike.

Dynamic Pile Monitoring

- Capacity at the time of testing, driving hammer performance, driving stress, pile integrity.
- Performed during driving.
- Helps establish the Driving Criterion.
- Contributes to safe and economical production pile installation

Strain and Acceleration Sensors

For the Pile Driving Analyzer® and Dynamic Load testing. Strain Transducers and Accelerometers manufactured by Pile Dynamics are reliable, convenient to install and remove, and highly durable.

ACCURACY:

PDI sensors collect axially accurate signals at high micro-strain (strain transducers) and “g” (accelerometers) levels.

CALIBRATION:

Calibration sheets are furnished with each sensor.

Pile Dynamics recommends that sensors be recalibrated at least every two years, in accordance with ASTM D-4945.
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

Pile Integrity Tester: PIT-FV

The Pile Integrity Tester (PIT) performs Low Strain Integrity Testing, also called Sonic Echo or Pulse Echo Testing. The PIT may be used for augered cast-in-place (CFA) piles, drilled shafts, driven concrete piles, concrete filled pipes and timber piles. It detects potentially dangerous defects such as major cracks, necking, soil inclusions or voids and, in some situations, can determine unknown lengths of piles.

PIT-V, which features a larger screen, also reads velocity data from a single (traditional or cabled) accelerometer. **PIT-FV** has two data input channels. The first input is the acceleration measured on the pile. The second input may be from a second accelerometer or from an instrumented hammer.

PIT-V AND FV ACCELEROMETERS

Used with the Pile Integrity Tester (PIT)

Available in top or side mount. Attachment by bolt on system (side) or flat base mount (top) with adhesive. Full waterproofing.

ACCURACY:

PDI sensors collect axially accurate signals at high micro-strain (strain transducers) and “g” (accelerometers) levels.

CALIBRATION:

Calibration sheets are furnished with each sensor. Pile Dynamics recommends that sensors be recalibrated at least every two years, in accordance with ASTM D-5882.
Method Of Statement for Wave Propagation Pile Testing
High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test
According to the American Standards

Cross-Hole Analyzer (CHAMP)

For cross-hole and single hole sonic logging The Cross-Hole Analyzer (CHAMP) determines the quality and consistency of the concrete of drilled shafts, slurry walls, bored piles, cast-in-situ piles and other types of concrete foundations. It may be used for cross-hole sonic logging (CSL) of drilled shafts or single hole sonic logging (SSL) of smaller augered cast-in-place piles.

Features

• Small
• Light weight
• Rugged
• Easy touch screen operation
• Color LCD visible even in direct sunlight
• Battery lasts an entire day of normal testing

Sonic Logging Probes

Probes are sturdy: their oil-filled brass shells are pressure tested for water depths up to 300 m. Transmitter probes have an exclusive safety feature, they are powered by a 12 volt source in the CHAMP and transformed to higher voltages within the probe itself. These higher voltages allow testing between access tubes more than 3 m apart. The probes may be fitted with bottom extension weights for deeper shafts and centralizers to position the probes in the center of the tubes.
Method Of Statement for Wave Propagation Pile Testing
High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test
According to the American Standards

RESULTS OF TEST

High Strain Dynamic Testing Report
The report for Dynamic Load testing shall include the following information:

General Information
- Project info.
- Client info.
- Pile info (Length, Type, Diameter, Casting/Driving date ...etc.).
- Hammer info.
- Comments and recommendations about the pile(s) capacity.
- Equipment Certificates and Calibrations sheets.

Graphical outputs drawing
- Force vs. time curve.
- Velocity vs. time curve.
- Load vs. settlement curve.
- Load Distribution.

Detailed Tables outputs
- CAPWAP Summary
- Soil Model Parameters
- Extrema Table
- Dynamic Resistance Table
- General Summary
- Case Method
- Pile Profile and Pile Model
- Static Load table
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

Sample of the Graphical output for the Dynamic test report
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

CAPWAP SUMMARY RESULTS

<table>
<thead>
<tr>
<th>Soil Sgmnt No.</th>
<th>Dist. Below Gages m</th>
<th>Depth Below Grade m</th>
<th>Ru Force in Pile tons</th>
<th>Sum of Ru in Pile tons</th>
<th>Unit Resist. (Depth) s/m</th>
<th>Unit Resist. (Area) tons/m²</th>
<th>Smith Damping Factor</th>
<th>Quake mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1093.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.47</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>1093.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.297</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>11</td>
<td>0.6</td>
<td>1092.6</td>
<td>0.6</td>
<td>0.3</td>
<td>0.06</td>
<td>0.214</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>15</td>
<td>103</td>
<td>951.4</td>
<td>141.8</td>
<td>51.48</td>
<td>10.93</td>
<td>0.214</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>19</td>
<td>392.2</td>
<td>464.4</td>
<td>628.8</td>
<td>196.08</td>
<td>41.63</td>
<td>0.214</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>21</td>
<td>9</td>
<td>451.5</td>
<td>637.7</td>
<td>4.49</td>
<td>0.95</td>
<td>0.2318</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>23</td>
<td>2.3</td>
<td>451.3</td>
<td>640.1</td>
<td>1.17</td>
<td>0.25</td>
<td>0.2318</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>451.3</td>
<td>640.1</td>
<td>0</td>
<td>0</td>
<td>3.1511</td>
</tr>
</tbody>
</table>

Avg.

- Shaft: 53.3 m, 25.6 s/m, 0.214 mm
- Toe: 453.1 m, 256.55 s/m, 0.746 mm

Soil Model Parameters/Extensions

- Case Damping Factor: 0.084
- Unloading Quake (% of loading quake): 9
- Reloading Level (% of Ru): 100
- Unloading Level (% of Ru): 12
- Resistance Gap (included in Roe Quake) (mm): 0.108
- Soil Plug Weight (tons): 2.11

max. Top Comp. Stress = 0.067 tons/cm² (T= 22.7 ms, max= 1.048 x Top)
max. Comp. Stress = 0.070 tons/cm² (Z= 15.0 m, T= 26.9 ms)
max. Tens. Stress = 0.031 tons/cm² (Z= 20.0 m, T= 31.0 ms)
max. Energy (EMX) = 2.62 tonne-m; max. Measured Top Displ. (DMX) = 4.32 mm

EXTREMA TABLE

<table>
<thead>
<tr>
<th>Sgmnt No.</th>
<th>Dist. Below Gages m</th>
<th>max. Force tons</th>
<th>min. Force tons</th>
<th>max. Comp. Stress tons/cm²</th>
<th>max. Tens. Stress tons/cm²</th>
<th>max. Transfd Stress Energy tonne-m</th>
<th>max. Veloc. m/s</th>
<th>max. Displ. mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.42</td>
<td>0.067</td>
<td>-0.008</td>
<td>2.62</td>
<td>0.7</td>
<td>3.424</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-2.145</td>
<td>0.067</td>
<td>-0.012</td>
<td>2.61</td>
<td>0.7</td>
<td>3.358</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-2.906</td>
<td>0.067</td>
<td>-0.016</td>
<td>2.58</td>
<td>0.7</td>
<td>3.163</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-3.496</td>
<td>0.067</td>
<td>-0.002</td>
<td>2.56</td>
<td>0.7</td>
<td>3.143</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>-3.973</td>
<td>0.068</td>
<td>-0.022</td>
<td>2.56</td>
<td>0.7</td>
<td>3.192</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>-3.795</td>
<td>0.067</td>
<td>-0.021</td>
<td>2.25</td>
<td>0.6</td>
<td>3.215</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>-3.569</td>
<td>0.066</td>
<td>-0.02</td>
<td>2.11</td>
<td>0.6</td>
<td>3.157</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>-5.428</td>
<td>0.053</td>
<td>-0.031</td>
<td>1.59</td>
<td>0.7</td>
<td>3.112</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>-4.645</td>
<td>0.049</td>
<td>-0.026</td>
<td>1.53</td>
<td>0.7</td>
<td>3.123</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>-1.70</td>
<td>0.04</td>
<td>-0.01</td>
<td>1.38</td>
<td>0.9</td>
<td>3.197</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>-80.1</td>
<td>0.032</td>
<td>-0.005</td>
<td>1.41</td>
<td>0.9</td>
<td>3.167</td>
<td></td>
</tr>
</tbody>
</table>

Absolute

- 15
- 20

(T = 26.9 ms)

Sample (1 of 3) of the detailed table output
Method Of Statement for Wave Propagation Pile Testing

High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test

According to the American Standards

DYNAMIC RESISTANCE TABLE

<table>
<thead>
<tr>
<th>Soil Sgmt No.</th>
<th>Dist. Below Gages m</th>
<th>Depth Below Grade m</th>
<th>Sp</th>
<th>Damping Rd at Max. Rt tons</th>
<th>Max Rt (Ru+Rd) tons/m</th>
<th>Depth Area tons/m^2</th>
<th>Total Unit R W. Resp. tc Area tons/m^2</th>
<th>Smith Damping Factor s/m</th>
<th>Quake mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.47</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.373</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.21</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>11</td>
<td>0.6</td>
<td>0.1</td>
<td>0.7</td>
<td>0.33</td>
<td>0.07</td>
<td>0.214</td>
<td>2.194</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>17</td>
<td>94.8</td>
<td>3.2</td>
<td>98</td>
<td>49</td>
<td>10.4</td>
<td>0.214</td>
<td>3.008</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>19</td>
<td>392.2</td>
<td>3.9</td>
<td>396.1</td>
<td>198.04</td>
<td>42.05</td>
<td>0.214</td>
<td>2.978</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>23</td>
<td>2.3</td>
<td>0</td>
<td>2.4</td>
<td>1.18</td>
<td>0.25</td>
<td>0.214</td>
<td>3.167</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.151</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.924</td>
</tr>
<tr>
<td>Shaft</td>
<td></td>
<td></td>
<td>53.3</td>
<td>1.2</td>
<td>54.5</td>
<td>26.18</td>
<td>5.56</td>
<td>0.214</td>
<td>3.002</td>
</tr>
<tr>
<td>Toe</td>
<td></td>
<td></td>
<td>453.1</td>
<td>150.3</td>
<td>603.4</td>
<td>341.67</td>
<td>0.746</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1257.9</td>
</tr>
</tbody>
</table>

General Summary

- Mobilized Soil Resistance: 1093 tons
- Mobilized Shaft Resistance: 640.1 tons
- Mobilized Toe Resistance: 453.1 tons
- Maximum Displacement at Failure: 7.562 mm
- Maximum Static Top Displacement: 7.661 mm
- Maximum Compressive Stress: 0.07013 tons/cm^2
- Maximum Tension Stress: 0.03073 tons/cm^2
- Maximum Transferred Energy (Measured): 2.616 tonne-m

CASE METHOD

<table>
<thead>
<tr>
<th>J = 0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>1100.1</td>
<td>980.9</td>
<td>861.6</td>
<td>742.4</td>
<td>623.1</td>
<td>503.9</td>
<td>384.6</td>
<td>265.3</td>
</tr>
<tr>
<td>RX</td>
<td>1118.2</td>
<td>992.2</td>
<td>866.3</td>
<td>742.4</td>
<td>643.1</td>
<td>643.1</td>
<td>643.1</td>
<td>643.1</td>
</tr>
<tr>
<td>RU</td>
<td>1282.5</td>
<td>1181.5</td>
<td>1080.4</td>
<td>979.4</td>
<td>878.4</td>
<td>777.4</td>
<td>676.4</td>
<td>575.3</td>
</tr>
</tbody>
</table>

RAU = 608.7 (tons); RA2 = 639.1 (tons)
Current CAPWAP Ru = 1093.2 (tons); Corresponding J(RP)= 0.01; J(RX)= 0.02

<table>
<thead>
<tr>
<th>VMX</th>
<th>TVP</th>
<th>VT1*Z</th>
<th>FT1</th>
<th>FMX</th>
<th>DMX</th>
<th>DFN</th>
<th>SET</th>
<th>EMX</th>
<th>QUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/s</td>
<td>ms</td>
<td>ms</td>
<td>tons</td>
<td>tons</td>
<td>tons</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>tonne-m</td>
</tr>
<tr>
<td>0.82</td>
<td>21.55</td>
<td>1331.7</td>
<td>961</td>
<td>1032.7</td>
<td>4.317</td>
<td>0.099</td>
<td>0.1</td>
<td>2.5</td>
<td>1149.7</td>
</tr>
</tbody>
</table>

PILE PROFILE AND PILE MODEL

<table>
<thead>
<tr>
<th>Depth m</th>
<th>Area cm^2</th>
<th>E-Modulus Spec. Weigh tons/cm^2</th>
<th>Perim. tons/m^2</th>
<th>Perim. m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17662</td>
<td>351.5</td>
<td>2.403</td>
<td>4.71</td>
</tr>
<tr>
<td>25</td>
<td>17662</td>
<td>351.5</td>
<td>2.403</td>
<td>4.71</td>
</tr>
<tr>
<td>Toe Area</td>
<td>1.766</td>
<td>m^2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top Segment Length 1.00 m, Top Impedance 1639.15 tons/m/s
Pile Damping 2.0 %, Time Incr 0.295 ms, Wave Speed 3387.8 m/s, 2L/c 14.8 ms

Sample (2 of 3) of the detailed table output
Method Of Statement for Wave Propagation Pile Testing
High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test
According to the American Standards

Test: 13-Mar-2013 15:33:
CAPWAP(R) 2006-3

<table>
<thead>
<tr>
<th>Step No.</th>
<th>Top Load tons</th>
<th>Top Disp. mm</th>
<th>Toe Load tons</th>
<th>Toe Disp. mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>27.6</td>
<td>0.156</td>
<td>10</td>
<td>0.066</td>
</tr>
<tr>
<td>8</td>
<td>55.3</td>
<td>0.312</td>
<td>13</td>
<td>0.132</td>
</tr>
<tr>
<td>12</td>
<td>82.9</td>
<td>0.467</td>
<td>29.9</td>
<td>0.198</td>
</tr>
<tr>
<td>16</td>
<td>110.5</td>
<td>0.623</td>
<td>39.8</td>
<td>0.264</td>
</tr>
<tr>
<td>20</td>
<td>138.1</td>
<td>0.779</td>
<td>49.8</td>
<td>0.33</td>
</tr>
<tr>
<td>24</td>
<td>165.8</td>
<td>0.935</td>
<td>59.7</td>
<td>0.396</td>
</tr>
<tr>
<td>28</td>
<td>193.4</td>
<td>1.09</td>
<td>69.7</td>
<td>0.462</td>
</tr>
<tr>
<td>32</td>
<td>221</td>
<td>1.246</td>
<td>79.7</td>
<td>0.528</td>
</tr>
<tr>
<td>36</td>
<td>248.6</td>
<td>1.402</td>
<td>89.6</td>
<td>0.594</td>
</tr>
<tr>
<td>40</td>
<td>276.3</td>
<td>1.558</td>
<td>99.6</td>
<td>0.66</td>
</tr>
<tr>
<td>44</td>
<td>303.9</td>
<td>1.713</td>
<td>109.5</td>
<td>0.726</td>
</tr>
<tr>
<td>48</td>
<td>331.5</td>
<td>1.869</td>
<td>119.5</td>
<td>0.792</td>
</tr>
<tr>
<td>52</td>
<td>359.1</td>
<td>2.025</td>
<td>129.5</td>
<td>0.858</td>
</tr>
<tr>
<td>56</td>
<td>386.8</td>
<td>2.181</td>
<td>139.4</td>
<td>0.924</td>
</tr>
<tr>
<td>60</td>
<td>414.4</td>
<td>2.337</td>
<td>149.4</td>
<td>0.99</td>
</tr>
<tr>
<td>64</td>
<td>442</td>
<td>2.492</td>
<td>159.3</td>
<td>1.056</td>
</tr>
<tr>
<td>68</td>
<td>469.6</td>
<td>2.648</td>
<td>169.3</td>
<td>1.122</td>
</tr>
<tr>
<td>72</td>
<td>497.2</td>
<td>2.804</td>
<td>179.2</td>
<td>1.187</td>
</tr>
<tr>
<td>76</td>
<td>524.8</td>
<td>2.959</td>
<td>189.2</td>
<td>1.253</td>
</tr>
<tr>
<td>80</td>
<td>552.2</td>
<td>3.115</td>
<td>199.2</td>
<td>1.319</td>
</tr>
<tr>
<td>84</td>
<td>579.6</td>
<td>3.27</td>
<td>209.1</td>
<td>1.385</td>
</tr>
<tr>
<td>88</td>
<td>613.6</td>
<td>3.464</td>
<td>219.6</td>
<td>1.468</td>
</tr>
<tr>
<td>92</td>
<td>647.3</td>
<td>3.656</td>
<td>234</td>
<td>1.55</td>
</tr>
<tr>
<td>96</td>
<td>680.5</td>
<td>3.848</td>
<td>246.5</td>
<td>1.633</td>
</tr>
<tr>
<td>100</td>
<td>713.3</td>
<td>4.039</td>
<td>258.9</td>
<td>1.715</td>
</tr>
<tr>
<td>104</td>
<td>745.5</td>
<td>4.229</td>
<td>271.3</td>
<td>1.798</td>
</tr>
<tr>
<td>108</td>
<td>776.9</td>
<td>4.416</td>
<td>283.8</td>
<td>1.88</td>
</tr>
<tr>
<td>112</td>
<td>807.1</td>
<td>4.6</td>
<td>296.2</td>
<td>1.963</td>
</tr>
<tr>
<td>116</td>
<td>836</td>
<td>4.781</td>
<td>308.7</td>
<td>2.045</td>
</tr>
<tr>
<td>120</td>
<td>863.5</td>
<td>4.957</td>
<td>321.1</td>
<td>2.128</td>
</tr>
<tr>
<td>124</td>
<td>894.1</td>
<td>5.162</td>
<td>335.3</td>
<td>2.227</td>
</tr>
<tr>
<td>128</td>
<td>925.8</td>
<td>5.377</td>
<td>350.5</td>
<td>2.327</td>
</tr>
<tr>
<td>132</td>
<td>958.2</td>
<td>5.585</td>
<td>364.7</td>
<td>2.411</td>
</tr>
<tr>
<td>136</td>
<td>1000.9</td>
<td>5.881</td>
<td>380.3</td>
<td>2.574</td>
</tr>
<tr>
<td>140</td>
<td>1022.4</td>
<td>6.164</td>
<td>402.1</td>
<td>2.804</td>
</tr>
<tr>
<td>144</td>
<td>1042.5</td>
<td>6.395</td>
<td>424.3</td>
<td>2.936</td>
</tr>
<tr>
<td>148</td>
<td>1059.8</td>
<td>6.607</td>
<td>444.4</td>
<td>3.064</td>
</tr>
<tr>
<td>152</td>
<td>1072.6</td>
<td>6.804</td>
<td>463.3</td>
<td>3.233</td>
</tr>
<tr>
<td>156</td>
<td>1081.5</td>
<td>7.003</td>
<td>481.5</td>
<td>3.398</td>
</tr>
<tr>
<td>160</td>
<td>1087.8</td>
<td>7.21</td>
<td>497.7</td>
<td>3.579</td>
</tr>
<tr>
<td>164</td>
<td>1091</td>
<td>7.388</td>
<td>510.9</td>
<td>3.744</td>
</tr>
<tr>
<td>168</td>
<td>1091.8</td>
<td>7.49</td>
<td>519.8</td>
<td>3.843</td>
</tr>
<tr>
<td>172</td>
<td>1092</td>
<td>7.54</td>
<td>519.8</td>
<td>3.892</td>
</tr>
<tr>
<td>176</td>
<td>1093.2</td>
<td>7.562</td>
<td>535.3</td>
<td>3.909</td>
</tr>
</tbody>
</table>

Sample (3 of 3) of the detailed table output
Method Of Statement for Wave Propagation Pile Testing
High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test
According to the American Standards

Sample of the Certificates and Calibration Sheets

AL-LIQA’A BUREAU FOR PILING TEST | Street 18, Al-Rashan Building, Karadah Kharij
Phone: +964 (0) 7902 377 309
www.lptconsultant.com
Email: info@lptconsultant.com
Low Strain Pile Integrity Testing

The report for Pile Integrity Test shall include the following information:

General Information

- Project info.
- Client info.
- Pile info (Length, Type, Diameter, Casting/Driving date ...etc.).
- Assessment (Pile Acceptance criteria)
- Equipment Certificates and Calibrations sheets.

Graphical outputs drawing

- Velocity vs. time curve for average impacts for each individual pile.
- Pile profile plot (in case of flaw or damage).

Detailed Tables outputs

- Piles Rating (AA, AB, ABx, PFx or PDx)
Method Of Statement for Wave Propagation Pile Testing
High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test
According to the American Standards

Sample of the Velocity curves
Method Of Statement for Wave Propagation Pile Testing
High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test
According to the American Standards

<table>
<thead>
<tr>
<th>Rating</th>
<th>Piles Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>090 – 281</td>
<td>Strong and clear toe reflection with no major defect</td>
</tr>
<tr>
<td>ABx10</td>
<td>468</td>
<td>No major defect till depth of 10M</td>
</tr>
</tbody>
</table>

Summary
AA: 2 Piles
AB: 35 Piles
ABx10: 1 Piles
Total = 38 Piles

Sample of the Piles Rating Table

Sample of the Pile Profile Plot
Method Of Statement for Wave Propagation Pile Testing
High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test
According to the American Standards

Sample of Equipment Certificates and Calibration sheets
Cross Hole Sonic Test

The report for Cross-hole Sonic Test shall include the following information:

General Information

- Project info.
- Client info.
- Pile info (Length, Type, Diameter, Casting date ...etc.).
- Comment and Recommendation on each pile condition.

Access Tube Information

- No. of access tube and dimensions.
- Access tube drawings.
- Total no. of used path.

Graphical out puts drawing

- Velocity Log curve, for each access tube combination.
Method Of Statement for Wave Propagation Pile Testing
High Strain Dynamic Test, Low Strain Integrity Test & Cross Hole Sonic Test
According to the American Standards
ACCEPTANCE CRITERIA

The acceptance of a Test will be based on the following:

- The pile was installed in accordance with its respective specification.

- All the Project/Client/Pile Information shall be submitted by the Engineer prior to the test.

- The pile was tested in accordance with the test procedures contained in this Method of Statement and according to the corresponding American Standard code:
 - ASTM D4549-08 for Dynamic Load Test
 - ASTM D5882-07 for Pile Integrity Test
 - ASTM D6760-08 for Cross hole Sonic Test

- All field testing and measurements shall be made in the presence of the Engineer.

- The equipment required to be attached to the pile shall be appropriately positioned and fixed to the approval of the Engineer.

- Equipment readings validate that no load or stress was transferred to the Pile exceeding the allowable limits (If such limit was proposed by the Engineer).

- The acceptable test pile meets any other criteria indicated in the contract documents.

- The “Test Report” and equipment certifications and Calibrations have been submitted as outlined in “Test Results”.
METHOD OF STATEMENT FOR WAVE PROPAGATION PILE TESTING

According to the American Standards

ASTM D4945-08, ADTM D5882-07 and ASTM D6760-08